Increasing the accuracy in locally divergence-preserving finite volume schemes for MHD
نویسندگان
چکیده
It is of utmost interest to control the divergence of the magnetic flux in simulations of the ideal magnetohydrodynamic equations since, in general, divergence errors tend to accumulate and render the schemes unstable. This paper presents a higher-order extension of the locally divergence-preserving procedure developed in Torrilhon [M. Torrilhon, Locally divergence-preserving upwind finite volume schemes for magnetohydrodynamic equations, SIAM J. Sci. Comput. 26 (2005) 1166–1191]; a fourth-order accurate local redistribution of the numerical magnetic field fluxes of a finite volume base scheme is introduced. The redistribution ensures that a fourth-order accurate discrete divergence operator is preserved to round off errors when applied to the cell averages of the magnetic flux density. The developed procedure is applicable to generic semi-discrete finite volume schemes and its purpose is to stabilize the schemes using a local procedure that respects the accuracy of the base scheme to a greater extent than the previous second-order achievements. Numerical experiments that demonstrate the properties of the new procedure are also presented. 2007 Elsevier Inc. All rights reserved. AMS: 35L65; 35L45; 65M06; 76N15
منابع مشابه
Locally Divergence-preserving Upwind Finite Volume Schemes for Magnetohydrodynamic Equations
A main issue in nonstationary, compressible magnetohydrodynamic (MHD) simulations is controlling the divergence of the magnetic flux. This paper presents a general procedure showing how to modify the intercell fluxes in a conservative MHD finite volume code such that the scheme becomes locally divergence preserving. That is, a certain discrete divergence operator vanishes exactly during the ent...
متن کاملPotential based, constraint preserving, genuinely multi-dimensional schemes for systems of conservation laws
We survey the new framework developed in [33, 34, 35], for designing genuinely multi-dimensional (GMD) finite volume schemes for systems of conservation laws in two space dimensions. This approach is based on reformulating edge centered numerical fluxes in terms of vertex centered potentials. Any consistent numerical flux can be used in defining the potentials. Suitable choices of the numerical...
متن کاملPotential based , constraint preserving , genuinely multi - dimensional schemes for systems of conservation laws Siddhartha Mishra
We survey the new framework developed in [33, 34, 35], for designing genuinely multi-dimensional (GMD) finite volume schemes for systems of conservation laws in two space dimensions. This approach is based on reformulating edge centered numerical fluxes in terms of vertex centered potentials. Any consistent numerical flux can be used in defining the potentials. Suitable choices of the numerical...
متن کاملProvably Positive Discontinuous Galerkin Methods for Multidimensional Ideal Magnetohydrodynamics
The density and pressure are positive physical quantities in magnetohydrodynamics (MHD). Design of provably positivity-preserving (PP) numerical schemes for ideal compressible MHD is highly desired, but remains a challenge especially in the multi-dimensional cases. In this paper, we develop uniformly high-order discontinuous Galerkin (DG) schemes which provably preserve the positivity of densit...
متن کاملPositivity-preserving Finite Difference Weno Schemes with Constrained Transport for Ideal Magnetohydrodynamic Equations
In this paper, we utilize the maximum-principle-preserving flux limiting technique, originally designed for high order weighted essentially non-oscillatory (WENO) methods for scalar hyperbolic conservation laws, to develop a class of high order positivity-preserving finite difference WENO methods for the ideal magnetohydrodynamic (MHD) equations. Our schemes, under the constrained transport (CT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 227 شماره
صفحات -
تاریخ انتشار 2008